General Aim
Determination of focal length and the power of lens.

Method
General method

Learning Objectives (ILOs)
- Understand the image formation for a convex lens.
- Understanding the difference between both the focal length and power of a lens and how to determine them.

Theoretical Background/Context
Rays coming from very far away are practically parallel. If such rays are also parallel to the main axis of the lens, the image forms at \(f \), the focal point of the lens will be real and inverted.

General method implies, the relation between the object distance \(p \), the image distance \(q \), and the focal length \(f \) is given by the thin lens formula as

\[
f = \frac{pq}{p + q}
\]

And the power of this lens will be obtained from

\[
F = \frac{100}{f} = \frac{100}{p + \frac{100}{q}}
\]

Principle of Work
Finding the focal length and the power of the lens through changing the distance between screen lens according to the distance between object and lens.