Millikan Oil Drop Virtual Lab Simulation | PraxiLabs

Millikan Oil Drop Virtual Lab Simulation

Physics | Modern Physics


As Featured In

Millikan Oil Drop Virtual Lab

General Aim of Millikan Oil Drop

To verify the quantization of the electric charge.

Millikan’s Oil Drop Method

Oil Drop Method.

Learning Objectives of Millikan Oil Drop Experiment

  • Explain the effect of the electric field on the motion of charged particles within it.

  • Analyze the motion of charged oil drop within an electric field in terms of the different factors affecting its motion.

  • Demonstrate that electric charge only comes in discrete units – “the quantization of charge”.

  • Measure the intrinsic charge of the electron (the smallest discrete unit of charge).

Theory of Millikan Oil Drop Experiment

Oil drops are sprayed into a region between two plates where an electric field is applied. The oil drops acquire some charge from an ionizing source. Thus the oil drop’s motion between the plates is affected by its mass and the amount of charge it has acquired from the ionizing radiation. The motion of the charge is controlled by the value of the applied electric field and its polarity, thus it may fall, rise, or even remain stationary between the plates.

Millikan Oil Drop Experiment Principle

In millikan oil drop experiment, by measuring the fall and rise speed of the oil drops in the presence of the electric field for oil drops, we can determine the amount of charge it has acquired. Hence, it can be proved that the amount of charge carried by each drop is an integer multiple of the electron charge.


PraxiLabs is Recognized Worldwide

Customers Love PraxiLabs

“With the onset of the COVID-19 pandemic, we found ourselves in a situation that forced us to act quickly to find the best solution available to provide our students with a quality molecular genetics laboratory experience.”

Korri Thorlacius, B.Sc.
Biology Laboratory Instructor
Biology Department
Kwantlen Polytechnic University

'' Although there are now several vendors offering virtual reality software for physics labs, there is only one that offers a realistic, I feel like I’m in a real lab, solution: PraxiLabs.''

Dr.‌ ‌William‌ ‌H.‌ ‌Miner,‌ ‌Jr.‌ ‌
Professor‌ ‌of‌ ‌Physics‌ ‌
Palm‌ ‌Beach‌ ‌State‌ ‌College‌ ‌
Boca‌ ‌Raton,‌ ‌FL‌

" PraxiLabs offered my students a chance to actively engage with the material. Instead of watching videos on a topic, they could virtually complete labs and realize the practical applications of class topics. This is a quality alternative to in-person labs."

Crys Wright
Teaching Assistant
Texas A&M University, USA

"Great user experience and impressive interaction, I am very pleased to have tried the simulations and will continue to do so."

Dr. Khaled M Goher
Lecturer in Biomedical Engineering
Aston University, UK

The #1 Science Virtual Labs used by Educational Institutions

Explore More Interactive 3D Virtual Simulations

Designed for Safety and Engagement

Find out how PraxiLabs keeps students engaged and improves learning outcomes